	2013 年度 前期期末試験	学年	学系	学籍番号		氏 名	
科目名	化学基礎						
教員名	類家 正稔						
試験日	2013 年 7 月 17 日 水曜日 1 時限	参照欄	全て不可,			採点欄	
		参照 欄	電卓のみ持ち込み可				
		備考	着席は普段通りで良い			/100	
配布欄	問題用紙1枚:回収しない	別紙解答用紙 1 枚:回収する			計算用紙1枚:回収しない		

以下の設問に答えなさい。答えは全て解答用紙に書きなさい。計算問題は有効数字に注意して,単位のあるものは必ず単位とともに答えなさい(なお,1.8 や2.0 の有効数字は 1.5 桁と数えず,5.2 や9.2 などと同じく 2 桁と数える)。また,気体は全て理想気体とみなしなさい。アヴォガドロ数は $N_{\rm A}=6.02\times 10^{23}$ とする。また,気体定数は $R=8.31~{
m J\cdot K^{-1}mol^{-1}}$ とする。

(配点:問題 1,2,7 は各小問 2点、問題問題 3~6 は各小問 5点とする)

- - のに、3 の数が異なる原子がある。このような原子を互いに4 という。 13 C の陽子の数は5 で、 13 C の

に適合する語句,物質名または数値

6 は 13 である。

1. 以下の文章の空欄

- (b) 水素分子の構造式は H H と表せ, 2 個の水素原子が それぞれの電子を 1 つずつ出し合って結合している。 このような結合を 7 という。二酸化炭素の構造式 は 8 と表せ, 非共有電子は 9 対ある。
- (c) アンモニア ${
 m NH_3}$ と水素イオン ${
 m H^+}$ からできたアンモニウムイオンでは,一方の原子のみが電子を 2 個だして結合をつくっている。このような結合を 10 という。
- 2. 以下の文中の 1 ~ 6 に適切な語句を記入しなさい。 (2010 年期末試験 [2])

純物質は、温度と圧力により固体、液体、気体のいずれかの状態をとる。固体では、分子、原子、イオンなどの粒子が規則正しく並んだ 1 の状態と、不規則に並んで位置を占めた 2 の状態がある。固体から液体に変化することを 3 といい、この温度を 4 という。液体が気体になる変化を 5 と呼び、固体から液体を経由しないで気体になる変化を 6 と呼ぶ。

3. 以下の間に答えなさい。

(2009 年度末試験 [3])

- (a) 100°C を絶対温度で表すと何 K になるか。
- (b) 圧力 5.00×10^5 Pa, 温度 27° C の気体が容積 5.00 L のボンベに入っている。温度が 77° C になると気体の圧力は何 Pa になるか(温度上昇によるボンベの膨張は無視する)。
- (c) ある気体 7.0 g が容積 7.5 L の密閉容器に入っている。気体の温度は 27°C で,圧力は 8.31×10^4 Pa であった。この気体の分子量をもとめよ。

- (d) 大気中の酸素の分圧を求めなさい。ただし、大気圧は 1.01×10^5 Pa で、大気圧は酸素と窒素が物質量比 $n_{\rm O_2}$: $n_{\rm N_2}=1:4$ で混合しているとする。
- 4. 水酸化ナトリウム (式量 40.0 とする) 240 g を水 (分子量 18.0 とする) に溶かして 1.00 L とした溶液の質量は 1.200 kg であった。以下の間に有効数字 3 桁で答えなさい。なお、計算式も書くこと。 (2012 年度末試験 [3])
 - (a) 密度 $(g \cdot cm^{-3})$ を求めなさい。
 - (b) 水酸化ナトリウムの容量モル濃度を求めなさい。
 - (c) 水酸化ナトリウムの質量%濃度を求めなさい。
 - (d) 水酸化ナトリウムの質量モル濃度を求めなさい。
 - (e) 水酸化ナトリウムのモル分率を求めなさい。
- 5. ブタン(C_4H_{10})の 1 mol を完全燃焼させると水は何 g 生成するか。ただし、水の分子量は 18 とする。(有効数字 2 桁) (2012 年度末試験 [4])
- 6. 酢酸の 0.100 mol L^{-1} 溶液の電離度 α は 0.0165 である。 (2011 年度末試験 [8])
 - (a) 電離平衡定数を求めなさい。
 - (b) 上で求めた酢酸の電離平衡定数から 0.50 mol L^{-1} 溶液の電離度を求めなさい。
- 7. 次の文章の空欄 に適合する語句,物質名または数値を 答えなさい。 (2012 年度末試験 [7]) 以下に示すマグネシウムの燃焼反応を考える。

 $2\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2\mathrm{MgO}$ Mg の酸化数は、単体においては a であるが、 MgO においては b である。

 $2{
m KI}+{
m Cl}_2\longrightarrow {
m I}_2+2{
m KCl}$ この反応では,酸化された原子はm c であり,還元された原子はm d である。

1	1	タッヤモンド (フラーレン,ナ)チューブ)	2	同素体	3	中性子
	4	同位体	5	. 6	6	質量数
	7	共有結合	8	O = C = 0	9	4
	10	世子社		1 1		

2 非晶質 3 融解(液化) 4 融点, 5 蒸笼 6 昇華

3 a 373 K b $5.83 \times 10^5 P_a$ c 28

4 a 1.20 g/cm³ b 6.00 mol/L c 20.0 % d 6.25 mol/kg e 0.101

5 90 g

6 a 2.72×10 mol/2 b 0.0074

7 a 0 b +2 c ヨウ素 エ
d 塩素 Cl